Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Trends Mol Med ; 30(4): 361-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485648

RESUMO

Eating disorders (EDs) and obesity are complex health conditions sharing various risk and maintenance factors, intensified in cases of comorbidity. This review explores the similarities and connections between these conditions, examining different facets from a multidisciplinary perspective, among them comorbidities, metabolic and psychological factors, neurobiological aspects, and management and therapy implications. We aim to investigate the common characteristics and complexities of weight and EDs and explore their interrelationships in individuals who experience both. The rising prevalence of EDs in people with obesity necessitates integrated approaches to study this comorbidity and to identify and analyze both common and distinct features of these conditions. This review may offer new opportunities for simultaneous prevention and management approaches, as well as future lines of research.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Obesidade , Humanos , Obesidade/epidemiologia , Obesidade/terapia , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Comorbidade
2.
Nat Rev Endocrinol ; 20(2): 111-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049643

RESUMO

An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Masculino , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Puberdade/fisiologia , Maturidade Sexual/fisiologia , Obesidade/genética
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069231

RESUMO

Autonomic innervation is important to regulate homeostasis in every organ of the body. The sympathetic nervous system controls several organs associated with metabolism and reproduction, including adipose tissue, the liver, and the ovaries. The sympathetic nervous system is controlled within the central nervous system by neurons located in the hypothalamus, which in turn are regulated by hormones like leptin. Leptin action in the hypothalamus leads to increased sympathetic activity in the adipose tissue. In this short report, we propose that leptin action in the brain also controls the sympathetic innervation of other organs like the liver and the ovary. We performed two experiments: We performed an intracerebroventricular (ICV) injection of leptin and measured norepinephrine levels in several organs, and we used a validated model of overnutrition and obesity to evaluate whether an increase in leptin levels coexists with high levels of norepinephrine in the liver and ovaries. Norepinephrine was measured by ELISA in adipose tissue and by HPLC-EC in other tissues. Leptin was measured by ELISA. We found that the ICV injection of leptin increases norepinephrine levels in several organs, including the liver and ovaries. Also, we found that diet-induced obesity leads to an increase in leptin levels while inducing an increase in norepinephrine levels in the liver and ovaries. Finally, since hyperactivity of the sympathetic nervous system is observed both in non-alcoholic fatty liver disease and polycystic ovary syndrome, we think that an increase in norepinephrine levels induced by hyperleptinemia could be involved in the pathogenesis of both diseases.


Assuntos
Leptina , Norepinefrina , Feminino , Tecido Adiposo/metabolismo , Dieta , Leptina/metabolismo , Norepinefrina/metabolismo , Obesidade/metabolismo , Sistema Nervoso Simpático , Animais , Ratos
4.
Environ Pollut ; 335: 122214, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482334

RESUMO

Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Feminino , Humanos , Masculino , Adolescente , Kisspeptinas , Teorema de Bayes , Hormônios Esteroides Gonadais , Testosterona , Hormônio Foliculoestimulante
5.
J Clin Endocrinol Metab ; 108(11): 2747-2758, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37261390

RESUMO

Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for activating and maintaining the function of the hypothalamic-pituitary-gonadal axis, which controls the onset of puberty and fertility. Two recent studies suggest that, in addition to controlling reproduction, the neurons in the brain that produce GnRH are also involved in the control of postnatal brain maturation, odor discrimination, and adult cognition. This review will summarize the development and establishment of the GnRH system, with particular attention to the importance of its first postnatal activation, a phenomenon known as minipuberty, for later reproductive and nonreproductive functions. In addition, we will discuss the beneficial effects of restoring physiological (ie, pulsatile) GnRH levels on olfactory and cognitive alterations in preclinical Down syndrome and Alzheimer disease models, as well as the potential risks associated with long-term continuous (ie, nonphysiological) GnRH administration in certain disorders. Finally, this review addresses the intriguing possibility that pulsatile GnRH therapy may hold therapeutic potential for the management of some neurodevelopmental cognitive disorders and pathological aging in elderly people.


Assuntos
Cognição , Hormônio Liberador de Gonadotropina , Reprodução , Adulto , Idoso , Humanos , Cognição/fisiologia , Fertilidade , Hormônio Liberador de Gonadotropina/genética , Puberdade
6.
Curr Opin Pharmacol ; 71: 102382, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307655

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeos , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução/fisiologia , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Neurônios/fisiologia
8.
Metabolism ; 144: 155556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121307

RESUMO

BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.


Assuntos
Gonadotropinas , Kisspeptinas , Masculino , Feminino , Camundongos , Humanos , Animais , Kisspeptinas/genética , Neurônios/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Fertilidade
9.
Mol Metab ; 71: 101707, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933618

RESUMO

BACKGROUND/PURPOSE: Litter size is a biological variable that strongly influences adult physiology in rodents. Despite evidence from previous decades and recent studies highlighting its major impact on metabolism, information about litter size is currently underreported in the scientific literature. Here, we urge that this important biological variable should be explicitly stated in research articles. RESULTS/CONCLUSION: Below, we briefly describe the scientific evidence supporting the impact of litter size on adult physiology and outline a series of recommendations and guidelines to be implemented by investigators, funding agencies, editors in scientific journals, and animal suppliers to fill this important gap.


Assuntos
Roedores , Gravidez , Animais , Feminino , Tamanho da Ninhada de Vivíparos/fisiologia
10.
EBioMedicine ; 90: 104484, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36907105

RESUMO

BACKGROUND: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFß-pathways). Interestingly, an enrichment analysis uncovered a TGFß-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).


Assuntos
Glioblastoma , Inibidores de Hidroximetilglutaril-CoA Redutases , Metformina , Humanos , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos Retrospectivos , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
12.
Biol Sex Differ ; 14(1): 4, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750874

RESUMO

Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome Metabólica , Humanos , Masculino , Feminino , Caracteres Sexuais , Hormônios Esteroides Gonadais/metabolismo , Síndrome Metabólica/complicações , Obesidade/metabolismo
13.
Lancet Diabetes Endocrinol ; 11(3): 203-216, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36620967

RESUMO

Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.


Assuntos
Puberdade Precoce , Puberdade , Masculino , Feminino , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Puberdade Precoce/genética
14.
Front Pharmacol ; 13: 981817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339540

RESUMO

Cannabidiol (CBD) has been suggested as a potential therapy for inflammatory and fibrotic diseases. Cannabidiol was demonstrated to reduce alcohol-induced liver inflammation and steatosis but its specific activity on the fibrotic process was not investigated. Herein, the antifibrotic effects of cannabidiol in the skin were analysed in vitro using NIH-3T3 fibroblasts and human dermal fibroblasts and in vivo using the bleomycin-induced model of skin fibrosis. In a second model, non-alcoholic liver fibrosis was induced in mice by CCl4 exposure. Cannabidiol was administered daily, intraperitoneally in mice challenged with bleomycin and orally in CCl4 mice, and skin and liver fibrosis and inflammation were assessed by immunochemistry. Cannabidiol inhibited collagen gene transcription and synthesis and prevented TGFß-and IL-4 induced fibroblast migration. In the bleomycin model, cannabidiol prevented skin fibrosis and collagen accumulation around skin blood vessels, and in the CCl4 model cannabidiol significantly attenuated liver fibrosis measured by picrosirius red and Tenascin C staining and reduced T cell and macrophage infiltration. Altogether, our data further support the rationale of the medicinal use of this cannabinoid, as well as cannabis preparations containing it, in the management of fibrotic diseases including Systemic Sclerosis and Non-Alcoholic Fatty Liver Disease.

15.
Sci Transl Med ; 14(665): eabh2369, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197968

RESUMO

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.


Assuntos
Hipogonadismo , Óxido Nítrico , Animais , Cognição , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipogonadismo/complicações , Hipogonadismo/congênito , Hipogonadismo/genética , Camundongos , Proteínas Mutantes , Mutação/genética , Óxido Nítrico Sintase Tipo I/genética , Nitritos
17.
Science ; 377(6610): eabq4515, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048943

RESUMO

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Assuntos
Cognição , Disfunção Cognitiva , Síndrome de Down , Hormônio Liberador de Gonadotropina , Transtornos do Olfato , Adulto , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
18.
Nat Commun ; 13(1): 4663, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945211

RESUMO

Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.


Assuntos
RNA Helicases DEAD-box/metabolismo , Kisspeptinas , Ribonuclease III/metabolismo , Animais , Feminino , Fertilidade , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ribonuclease III/genética , Maturidade Sexual/genética
19.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328539

RESUMO

Weight gain is a hallmark of decreased estradiol (E2) levels because of menopause or following surgical ovariectomy (OVX) at younger ages. Of note, this weight gain tends to be around the abdomen, which is frequently associated with impaired metabolic homeostasis and greater cardiovascular risk in both rodents and humans. However, the molecular underpinnings and the neuronal basis for these effects remain to be elucidated. The aim of this study is to elucidate whether the kappa-opioid receptor (k-OR) system is involved in mediating body weight changes associated with E2 withdrawal. Here, we document that body weight gain induced by OVX occurs, at least partially, in a k-OR dependent manner, by modulation of energy expenditure independently of food intake as assessed in Oprk1-/-global KO mice. These effects were also observed following central pharmacological blockade of the k-OR system using the k-OR-selective antagonist PF-04455242 in wild type mice, in which we also observed a decrease in OVX-induced weight gain associated with increased UCP1 positive immunostaining in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Remarkably, the hypothalamic mTOR pathway plays an important role in regulating weight gain and adiposity in OVX mice. These findings will help to define new therapies to manage metabolic disorders associated with low/null E2 levels based on the modulation of central k-OR signaling.


Assuntos
Ingestão de Alimentos , Receptores Opioides kappa , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ovariectomia/efeitos adversos , Receptores Opioides kappa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aumento de Peso
20.
Hum Reprod Update ; 28(3): 346-375, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35187579

RESUMO

BACKGROUND: According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE: This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS: A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES: A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS: This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.


Assuntos
Kisspeptinas , Medicina Reprodutiva , Adulto , Feminino , Fertilidade , Humanos , Masculino , Gravidez , Saúde Reprodutiva , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...